

Ash Beneficiation Research

Date: 29 May 2025

Venue: Franklin Auditorium Megawatt Park

Presenter: Dr Kelley Reynolds-Clausen

Coal ash generation

INTRODUCTION

- Dumped ash
 - Combination of 80:20 Fly ash: Bottom ash
 - Weathered
 - Reactive
 - Vast volumes 3.2 billion tons.
 - Lower pH 8.5
- Eskom ash unique physical and mineralogical properties from
 - Poor quality sub-bituminous parent coal
 - Combustion conditions
 - Size and pressure of the boilers
 - Temperature
 - Air : fuel
 - Milling
 - Rate of combustion
 - Emission control techniques
 - Climate
 - Ash
 - Highly alkaline, Low sulphur, Low carbon, Pozzolanic
- Beneficiation relies on one or more of the properties
 - Spherical shape, pH, Pozzolanicity, Variety of particle sizes.

So, what can we do?

Well to start....

- Ash in Rubber extension published
- Ash Mine Backfilling published
 - Standards and Guidelines
 - Trials for environmental monitoring
- Zeolite production from Ash
- Ash in paint extension
- Ash to treat eutrophication in water
- Ash information books

Road Construction – Unstabilised fly ash

Fly ash utilisation in road construction

Basic laboratory studies

Fly ash characterisation

Detailed laboratory studies

Variability testing

Strength behaviour

Chemical and environmental

Trial sections

Monitor response due to HVS trafficking

Long-term performance assessment

Pavement Design

Technical Guideline for the use of Fly Ash in Road Construction

- Eskom Final report Explanation of the laboratory and pilot scale work completed.
- Guideline on the use of unstabilised fly ash in road construction.

Soil Amelioration – Agricultural

Soil Amelioration - Mine impacted soils

SLASH – Sewage, Lime ASH

REE Extraction

- Rare Earth Elements mostly from China have limited availability.
- Many research projects on extraction techniques, historically not cost effective.
- Need to understand what is available in Eskom ashes.
- Evaluated all dumped ashes in Eskom fleet.

Mine Backfilling

Mine Backfilling

CO₂ Reuse

- Use of CO₂ and flue gas for enhanced curing and strength development in zero cement concrete.
- Carbon aids setting.
- Crystal formation enhanced.
- Literature review complete.

CO₂ Reuse

- Zero Cement.
- Sand aggregate.
- No Slag
- Up to 12.73g of CO₂ added per litre of water used for mixing.

CO₂ Reuse

Why Coal ash geopolymer concrete materials?

- Fly ash and slag inexpensive raw material (wastes)
- High Silica (40 60%) and aluminium contents (20 30%)
- Low calcium, sulphur, carbon (unburnt coal) and iron concentrations
- Environmentally friendly No CO₂ emissions
- Considered user friendly new activators
 - Conventional activators hazardous, toxic and corrosive
- Can cure at a wide range of temperatures.
- Various strengths and flexibilities.
- Better heat resistance no hydrates in structure.
- Resistant to corrosion from saline, acidic or alkaline environments attributed to the lack of calcium in their structure.

Geopolymer Poles (wood replacement)

- 9 and 11m wooden pole replacement.
- Fire, moisture (rain and rot) and pest (termites, borer beetles)
 resistance.
- Must meet specifications for wood poles and SANS 720 for concrete poles.

Geopolymer Poles - formulations

- 1m laboratory trial cast pole formulation
 - Dumped coal ash and slag
 - Day 1 18.6 MPa, day 3 33.4 MPa, day 7 42.8 MPa and day 28 61.8 MPa compressive strength.
 - 12.6 MPa Flexural strength after 28 days
- Spun pipes
- No metal reinforcing plastic fibre.
- Non-hazardous activators

Geopolymer Poles - Production

Coal ash-based Shotcrete

- Fly ash-based Shotcrete
 - Spray on minimal bounce off
 - Sets within 2s 1.5 mPa
 - 70mPa after 28 days and 150 mPa after 6 months cannot be cut with diamond blade.
- Tx telecoms buildings and containers to be sprayed to reduce vandalism and theft and to insulate the buildings.

Poor Quality Soil Improvement – foundations - Tx

- Improvement of active clay, compressive or compacting soils
- Addition of coal ash, slag and activator to soil → improves soil grading.
- Strength 0.75MPa
- Beneath substations for construction support.
 - 300m x 300m x 1.5 3m of earth work removal.

Can reduce the cost of substation base construction from approximately R63 M to approximately R22 M per 300x300m sub station.

Not considering savings on testing, machinery and manpower on the lesser volume.

Waste Liners – What can we do?

Waste Liners – What do we need to do?

- Stabilised clay layer Below HDPE
 - Stabilised ash/soil as an impermeable layer.
 - Needs approval from government
 - Initial work conducted for Tx substation stabilisation.
 - More research required cannot be used at present.
 - Possible saving of approx. R400 R700/m³
 - Concept agreed by Department of Fisheries, Forestry and the environment.
 - Prove impermeability
 - Prove flexibility
 - Prove durability

CLASS C BARRIER SYSTEM

Conventional Road Construction

- Utilise virgin aggregate (rock) material to develop the support layers.
- Material is obtained from borrow pits in the area around the road construction.
- The materials, placed in reducing size are processed and stabilised with conventional cement.
- The top layer is bitumen as a wearing course.

Geopolymer Ash Road Construction (engineered layers)

Kusile PS - Geopolymer Ash Road – stabilised layers

- Pilot demonstration project Kusile Power Station 2 x 500m
 x 8m wide roads.
- Utilise legacy coal ash and G5 material (50:50) in the base and sub-base; C4 and C3 engineered stabilised layers.
- Reduction of cost of materials
- Reduced use of mined virgin materials.

- Reduced cost of construction materials.
- Reduction of ash management costs and rehabilitation.
- Can use waste-water in the construction.
- Reduced use of Cement allows for the claiming of carbon credits.
- Utilise 840 tons of legacy ash per 150mm layer of C3/C4 per kilometer.
- 50:50 ratio of ash to G5 material only due to criticality of the road –
 will optimise the use of ash in further research.

Geopolymer Ash Road Construction (wearing course)

the Stall

Benefits of the geopolymer ash road to Eskom

Kusile PS - Geopolymer Ash Road – Wearing Course

- Pilot demonstration project Kusile Power Station 2 x 500m
 x 8m wide roads.
- Utilise legacy coal ash and metal processing waste (slag) to form a 30MPa ash concrete for the top wearing course.
- Reduction of cost of materials.
- No cement use.

- Reduced cost of construction materials.
- Reduction of ash management costs and rehabilitation.
- Can use waste-water in the ash concrete batching.
- Reduced use of Portland cement allows for the claiming of carbon credits.
- Utilise 384 tons of legacy ash per 150mm layer per kilometer in the wearing course.

Inspections

Potential impact

Claiming of carbon credits

Cement: 1 ton of CO2 per ton.

- Conventional road 320 kg of cement is used per 1m³.
- Ash road cement limited to 25-46kg/m³) = 792.5 tons saving of CO2/km.
- Carbon rebate of R230/ton = R182 275/km of ash road produced.

Reduced materials costs

- Conventional road needs 6 270 tons of imported G5 material ~ R450 per ton = R2.8 million.
 - Ash road needs 3 135 tons = R1.4 million, thus
- a R1.4 million saving.

Reduced ash disposal facility (ADF) costs

- Ash management R30/ton.
- Ash road used 2 904 tons ash/kilometer = saving of R87 120/km by avoiding ash management.
- Reduced ash handling, management and rehabilitation and reduces liner development.

No leaching

Stabilised **ash does not leach or react with water**. It is a more stable material, **less likely to pothole formation.**

No Waste material

- No waste road material as is incorporated as aggregate,
- No waste dumping costs.

THANK-YOU

Questions?

Kelley Reynolds-Clausen Reynolka@eskom.co.za 082 880 5642